1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
| def softmax_loss_naive(W,X,y,reg): """ Softmax loss function ,naive implementation(with loops)
Inputs have dimension D,there are C classes,and we operate on minibatches of N examples :param W: A numpy array of shape(D,C) containing weights :param X: A numpy array of shaep(N,D) containing a minibatch of data :param y:A numpy array of shape(N,) containing training,labels,y[i] = c means :param reg:(float) regularization strength :return: A tuple of (loss as single float, gradient with respect to weights W,an array of same shape as W) """ loss = 0.0 dW = np.zeros_like(W)
num_train = X.shape[0] num_classes = W.shape[1] for i in range(num_train): scores = X[i,:].dot(W) scores_shift = scores - np.max(scores) right_class = y[i] loss += (-scores_shift[right_class] + np.log(np.sum(np.exp(scores_shift)))) for j in range(num_classes): softmax_output = np.exp(scores_shift[j]) / np.sum(np.exp(scores_shift)) if j == y[i]: dW[:,j] += (-1 + softmax_output) * X[i,:] else: dW[:,j] += softmax_output * X[i,:] loss /= num_train loss += 0.5 * reg * np.sum(W*W) dW /= num_train dW += reg * W
return loss,dW
def softmax_loss_vectorized(W,X,y,reg): """ Softmax loss function,vectorized version
Inputs and outputs are the same as softmax_loss_naive :param W: :param X: :param y: :param reg: :return: """ loss = 0.0 dW = np.zeros_like(W)
num_train = X.shape[0] num_classes = W.shape[1] scores = X.dot(W) scores_shift = scores - np.max(scores, axis=1) softmax_output = np.exp(scores_shift) / np.sum(np.exp(scores_shift), axis=1) loss = -np.sum(np.log(softmax_output[range(num_train), list(y)])) loss /= num_train loss += 0.5 * reg * np.sum(W * W)
dS = softmax_output.copy() dS[range(num_train), list(y)] += -1 dW = (X.T).dot(dS) dW = dW / num_train + reg * W
return loss, dW
|